Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4919, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664039

RESUMO

Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.


Assuntos
Expansão das Repetições de DNA , Epilepsias Mioclônicas/genética , Proteínas de Membrana/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idoso , Mapeamento Cromossômico , Feminino , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
2.
Biochim Biophys Acta ; 1853(10 Pt A): 2392-403, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26036346

RESUMO

MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To control cancer progression, miRNAs became very recently, major targets and tools to inhibit oncogene expression. Inhibiting MUC1 using miRNAs appears thus as an attractive strategy to reduce cancer progression. However, potent miRNAs and associated mechanisms regulating MUC1 expression remain to be identified. To this aim, we undertook to study MUC1 regulation by miRNAs in pancreatic cancer cells and identify those with tumor suppressive activity. MiRNAs potentially targeting the 3'-UTR, the coding region, or the 5'-UTR of MUC1 were selected using an in silico approach. Our in vitro and in vivo experiments indicate that miR-29a and miR-330-5p are strong inhibitors of MUC1 expression in pancreatic cancer cells through direct binding to MUC1 3'-UTR. MUC1 regulation by the other selected miRNAs (miR-183, miR-200a, miR-876-3p and miR-939) was found to be indirect. MiR-29a and miR-330-5p are also deregulated in human pancreatic cancer cell lines and tissues and in pancreatic tissues of Kras(G12D) mice. In vitro, miR-29a and miR-330-5p inhibit cell proliferation, cell migration, cell invasion and sensitize pancreatic cancer cells to gemcitabine. In vivo intra-tumoral injection of these two miRNAs in xenografted pancreatic tumors led to reduced tumor growth. Altogether, we have identified miR-29a and miR-330-5p as two new tumor suppressive miRNAs that inhibit the expression of MUC1 oncogenic mucin in pancreatic cancer cells.


Assuntos
Genes Supressores de Tumor , MicroRNAs/biossíntese , Mucina-1/biossíntese , Neoplasias Pancreáticas/metabolismo , RNA Neoplásico/biossíntese , Regiões 5' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , MicroRNAs/genética , Mucina-1/genética , Transplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Neoplásico/genética
3.
World J Gastroenterol ; 20(32): 11199-209, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25170204

RESUMO

Despite tremendous efforts from scientists and clinicians worldwide, pancreatic adenocarcinoma (PDAC) remains a deadly disease due to the lack of early diagnostic tools and reliable therapeutic approaches. Consequently, a majority of patients (80%) display an advanced disease that results in a low resection rate leading to an overall median survival of less than 6 months. Accordingly, robust markers for the early diagnosis and prognosis of pancreatic cancer, or markers indicative of survival and/or metastatic disease are desperately needed to help alleviate the dismal prognosis of this cancer. In addition, the discovery of new therapeutic targets is mandatory to design effective treatments. In this review, we will highlight the translational studies demonstrating that microRNAs may soon translate into clinical applications as long-awaited screening tools and therapeutic targets for PDAC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Animais , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Detecção Precoce de Câncer , Regulação Neoplásica da Expressão Gênica , Testes Genéticos , Humanos , MicroRNAs/sangue , Estadiamento de Neoplasias , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Valor Preditivo dos Testes , Fatores de Risco
4.
Int J Mol Sci ; 14(7): 15029-58, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23873296

RESUMO

DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results.


Assuntos
Metilação de DNA , Neoplasias/diagnóstico , Biomarcadores/sangue , Biomarcadores/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Humanos , Neoplasias/metabolismo
5.
PLoS One ; 8(1): e55513, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383211

RESUMO

MicroRNAs are small non-coding RNAs that physiologically modulate proteins expression, and regulate numerous cellular mechanisms. Alteration of microRNA expression has been described in cancer and is associated to tumor initiation and progression. The microRNA 148a (miR-148a) is frequently down-regulated in cancer. We previously demonstrated that its down-regulation by DNA hypermethylation is an early event in pancreatic ductal adenocarcinoma (PDAC) carcinogenesis, suggesting a tumor suppressive function. Here, we investigate the potential role of miR-148a over-expression in PDAC as a therapeutic tool. We first report the consequences of miR-148a over-expression in PDAC cell lines. We demonstrate that miR-148a over-expression has no dramatic effect on cell proliferation and cell chemo-sensitivity in four well described PDAC cell lines. We also investigate the modulation of protein expression by a global proteomic approach (2D-DIGE). We show that despite its massive over-expression, miR-148a weakly modulates protein expression, thus preventing the identification of protein targets in PDAC cell lines. More importantly, in vivo data demonstrate that modulating miR-148a expression either in the epithelia tumor cells and/or in the tumor microenvironment does not impede tumor growth. Taken together, we demonstrate herein that miR-148a does not impact PDAC proliferation both in vitro and in vivo thus suggesting a weak potential as a therapeutic tool.


Assuntos
Carcinoma Ductal Pancreático/genética , Expressão Gênica , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Proteoma , Proteômica , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
6.
Curr Genomics ; 12(1): 15-24, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21886451

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Despite significant progresses in the last decades, the origin of this cancer remains unclear and no efficient therapy exists. PDAC does not arise de novo: three remarkable different types of pancreatic lesions can evolve towards pancreatic cancer. These precursor lesions include: Pancreatic intraepithelial neoplasia (PanIN) that are microscopic lesions of the pancreas, Intraductal Papillary Mucinous Neoplasms (IPMN) and Mucinous Cystic Neoplasms (MCN) that are both macroscopic lesions. However, the cellular origin of these lesions is still a matter of debate. Classically, neoplasm initiation or progression is driven by several genetic and epigenetic alterations. The aim of this review is to assemble the current information on genetic mutations and epigenetic disorders that affect genes during pancreatic carcinogenesis. We will further discuss the interest of the genetic and epigenetic alterations for the diagnosis and prognosis of PDAC. Large genetic alterations (chromosomal deletion/amplification) and single point mutations are well described for carcinogenesis inducers. Mutations classically occur within key regions of the genome. Consequences are various and include activation of mitogenic pathways or silencing of apoptotic processes. Alterations of K-RAS, P16 and DPC4 genes are frequently observed in PDAC samples and have been described to arise gradually during carcinogenesis. DNA methylation is an epigenetic process involved in imprinting and X chromosome inactivation. Alteration of DNA methylation patterns leads to deregulation of gene expression, in the absence of mutation. Both genetic and epigenetic events influence genes and non-coding RNA expression, with dramatic effects on proliferation, survival and invasion. Besides improvement in our fundamental understanding of PDAC development, highlighting the molecular alterations that occur in pancreatic carcinogenesis could provide new clinical tools for early diagnosis of PDAC and the molecular basis for the development of new effective therapies.

7.
Cancers (Basel) ; 3(1): 872-82, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24212643

RESUMO

Endoscopic ultrasound-guided fine needle aspiration-biopsy is a safe and effective technique in diagnosing and staging of pancreatic ductal adenocarcinoma. However its predictive negative value does not exceed 50% to 60%. Unfortunately, the majority of pancreatic cancer patients have a metastatic and/or a locally advanced disease (i.e., not eligible for curative resection) which explains the limited access to pancreatic tissue specimens. Endoscopic ultrasound-guided fine needle aspiration-biopsy is the most widely used approach for cytological and histological material sampling in these situations used in up to two thirds of patients with pancreatic cancer. Based on this unique material, we and others developed strategies to improve the differential diagnosis between carcinoma and inflammatory pancreatic lesions by analysis of KRAS oncogene mutation, microRNA expression and methylation, as well as mRNA expression using both qRT-PCR and Low Density Array Taqman analysis. Indeed, differentiating pancreatic cancer from pseudotumoral chronic pancreatitis remains very difficult in current clinical practice, and endoscopic ultrasound-guided fine needle aspiration-biopsy analysis proved to be very helpful. In this review, we will compile the clinical and molecular advantages of using endoscopic ultrasound-guided fine needle aspiration-biopsy in managing pancreatic cancer.

8.
Clin Chem ; 56(7): 1107-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20431052

RESUMO

BACKGROUND: The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is accounted for by the absence of early diagnostic markers and effective treatments. MicroRNAs inhibit the translation of their target mRNAs. The production of microRNAs is strongly altered in cancers, but the causes of these alterations are only partially known. DNA hypermethylation is a major cause of gene inactivation in cancer. Our aims were to identify microRNAs whose gene expression is inactivated by hypermethylation in PDAC and to determine whether this hypermethylation-mediated repression is an early event during pancreatic carcinogenesis. We also sought to investigate whether these differentially methylated regions can serve as a diagnostic marker for PDAC. METHODS: MicroRNA production was measured by microarray hybridization and reverse-transcription quantitative PCR. The level of DNA methylation was measured by bisulfite mapping and semiquantitative methylation-specific PCR. RESULTS: We identified 29 microRNAs encoded by genes whose expression is potentially inactivated by DNA hypermethylation. We focused our study on microRNA 148a (miR-148a) and found its production to be repressed, not only in PDAC samples but also in preneoplastic pancreatic intraepithelial neoplasia (PanIN) lesions. More importantly, we found that hypermethylation of the DNA region encoding miR-148a is responsible for its repression, which occurs in PanIN preneoplastic lesions. Finally, we show that the hypermethylated DNA region encoding miR-148a can serve as an ancillary marker for the differential diagnosis of PDAC and chronic pancreatitis (CP). CONCLUSIONS: We show that the hypermethylation of the DNA region encoding miR-148a is responsible for its repression in PDAC precursor lesions and can be a useful tool for the differential diagnosis of PDAC and CP.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico , Metilação de DNA , MicroRNAs/biossíntese , Neoplasias Pancreáticas/diagnóstico , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Diagnóstico Diferencial , Regulação para Baixo , Inativação Gênica , Humanos , Camundongos , Camundongos Mutantes , MicroRNAs/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/diagnóstico , Reação em Cadeia da Polimerase , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...